Assignment 5.

1. Find the maximum value of the function $y=x^{2} \mathrm{e}^{1-2 x}$ for $x>0$.
2. Find the equation of the tangent to the curve of $y=x^{2} \ln x$ at $x=\mathrm{e}$.
3. Find the equation of the normal to the curve of $y=x \tan 2 x$ at the point where $x=\frac{1}{2} \pi$.
4. The curve $y=\frac{\mathrm{e}^{x}}{\cos x}$, for $-\frac{1}{2} \pi<x<\frac{1}{2} \pi$, has one stationary point. Find the x-coordinate of this point.
5. For a two-dimensional curve written in the form $y=f(x)$, the curvature of the curve at a particular point is defined as

$$
\kappa=\frac{\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}}{\left[1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}\right]^{\frac{3}{2}}}
$$

(a) Find the curvature of $y=\mathrm{e}^{x}$ at the point $(0,1)$.
(b) Find the curvature of $y=\ln x$ at the point $(1,0)$.
(c) Find the curvature of $y=\arctan x$ at the point $\left(1, \frac{\pi}{4}\right)$.
6. $(\boldsymbol{\dagger})$ Differentiate the function $y=x^{x}$.

Total mark of this assignment: $30+4$.
The symbol $(\boldsymbol{\dagger})$ indicates a bonus question. Finish other questions before working on this one.

